The majority of the rotational lines are from
(1) M. Caris, F. Lewen, and G. Winnewisser,
2002, Z. Naturforsch. 57a, 663.
Additional lower frequency data are from
(2) P. L. Clouser and W. Gordy,
1964, Phys. Rev. 134, 863.
Further, new lower frequency data are from
(3) C. Cabezas, J. Cernicharo, G. Quintana-Lacaci, I. Peña,
M. Agundez, L. Velilla Prieto, A. Castro-Carrizo, J. Zuñiga,
A. Bastida, J. L. Alonso, and A. Requena,
2016, Astrophys. J. 825, Art. No. 150;
and from
(4) B. A. Timp, J. L. Doran, S. Iyer, J.-U. Grabow, and K. R. Leopold,
2012, J. Mol. Spectrosc. 271, 20.
Rovibrational transitions were taken from
(5) R. S. Ram, M. Dulick, B. Guo, K.-Q. Zhang, P. F. Bernath,
1997, J. Mol. Spectrosc. 183, 360;
from
(6) H. Uehara, K. Horiai, K. Nakagawa, and T. Fujimoto,
1989, J. Mol. Spectrosc. 134, 98;
and from
(7) K. Horiai, T. Fujimoto, K. Nakagawa, and H. Uehara,
1989, Chem. Phys. Lett. 147, 133.
The analysis follows largely that in (3), meaning that data for
the 35Cl and 37Cl isotopologs were fit together.
23Na and 36Cl hyperfine splitting is
negligible except possibly for very low values of J.
Predictions should be reliable throughout for v up to
at least 4.
The partition function takes into account all states up to v = 30.
The dipole moments were calculated according to an empirical
formula from
(8) F. H. de Leeuw, R. van Wachem, and A. Dymanus,
1970, J. Chem. Phys. 53, 981;
with the vibrational contributions corrected according
to the Born-Oppenheimer approximation.
|