general

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revisionBoth sides next revision
general [2019/10/04 17:13] – [Special Considerations for 'l'-doubled States] admingeneral [2019/10/04 17:14] – [Some Examples] add infos admin
Line 398: Line 398:
 The //K// quantum numbers for  //l//-doubled states are designated specially when asymmetric rotor quanta are used so that the lower //K// doublet is associated with the EWT1 = 1 state and the upper //K// doublet and //K// = 0 states are assiciated with EWT1 = 2.  In this way the degenerate states have the same quantum numbers. The //K// quantum numbers for  //l//-doubled states are designated specially when asymmetric rotor quanta are used so that the lower //K// doublet is associated with the EWT1 = 1 state and the upper //K// doublet and //K// = 0 states are assiciated with EWT1 = 2.  In this way the degenerate states have the same quantum numbers.
  
-===== Some Examples =====+=====  Simple Examples ===== 
 + 
 +Example of parameter types for asymmetric rotors (assuming < 10 vibronic states): 
 + 
 +|11       |energy for v = 1                                                     | 
 +|01       |first order Fermi (F<sub>0</sub>) interaction between v = 0 and v = 1| 
 +|10000    |A<sub>00</sub>                                                       | 
 +|10099    |A (for all vibrational states)                                       | 
 +|20099    |B (dito)                                                             | 
 +|30099    |C (dito)                                                             | 
 +|40099    |0.25*(B – C)  (if prolate basis selected)                            | 
 +|299      |–D<sub>J</sub>                                                       | 
 +|1199     |–D<sub>JK</sub>                                                      | 
 +|2000     |–D<sub>K</sub> for v = 0                                             | 
 +|600001   |i N<sub>c</sub> interaction between v = 0 and v = 1                  | 
 +|20000099 |N·I for second spin                                                  | 
 +|120010099|S<sub>a</sub> I<sub>a</sub>                                          | 
 +|220010099|1.5*c<sub>zz</sub> for second spin                                   | 
 +|220040099|0.25*(c<sub>xx</sub>–c<sub>yy</sub>) for second spin                 | 
 + 
 +Quadrupole and magnetic spin-spin interactions are defined to be traceless (i.e. c<sub>xx</sub> + c<sub>yy</sub> + c<sub>zz</sub> = 0 or T<sub>xx</sub> + T<sub>yy</sub> + T<sub>zz</sub> = 0). Therefore, all three components cannot be fit simultaneously. The most efficient choice of parameters is shown in the table below. In cases where the user wants an alternative, it is possible to use constrained parameters. For example, to fit c<sub>aa</sub> and c<sub>cc</sub> (with no multipliers): 
 + 
 +''%% 220010099   100.%%''\\ 
 +''%%–220020099  –100.%%''\\ 
 +''%% 220030099    50.%%''\\ 
 +''%%–220020099   –50.%%'' 
 + 
 +specifies c<sub>aa</sub> = 100, c<sub>cc</sub> = 50, and c<sub>bb</sub> = –150.
  
 ===== Installation Instructions ===== ===== Installation Instructions =====
  • general.txt
  • Last modified: 2023/11/07 12:40
  • by mueller