molecules:ism:glycolaldehyd

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
molecules:ism:glycolaldehyd [2019/04/26 15:39] muellermolecules:ism:glycolaldehyd [2021/06/02 14:36] (current) mueller
Line 9: Line 9:
 //Astrophys. J.// **554**, L81–L85 (2001).\\ //Astrophys. J.// **554**, L81–L85 (2001).\\
 6 //b//-type rotational transitions in the 70 to 105 GHz region were searched for with the NRAO 12 m radio telescope in the former work. Two transitions were severely blended, the remaining four appeared to be free of contamination. No rotational temeperature was derived, but 200 K were assumed. Because of the small number of lines and possible line overlap this detection had to be viewed with some caution until further observations.\\ 6 //b//-type rotational transitions in the 70 to 105 GHz region were searched for with the NRAO 12 m radio telescope in the former work. Two transitions were severely blended, the remaining four appeared to be free of contamination. No rotational temeperature was derived, but 200 K were assumed. Because of the small number of lines and possible line overlap this detection had to be viewed with some caution until further observations.\\
-The 8<sub>08</sub> – 7<sub>17</sub> transition near 82.471 GHz was studied with the BIMA array in the latter work. The molecule was found to be distributed over a large area of more than 60" with no pronounced peak at the Large Molecule Heimat hot core, in contrast to its isomers acetic acid and methyl formate, which are concentrated on a much smaller scale of less than 5". This indicates a much lower rotational temperature than the 200 K assumed earlier.+The 8<sub>08</sub> – 7<sub>17</sub> transition near 82.471 GHz was studied with the BIMA array in the latter work. The molecule was found to be distributed over a large area of more than 60" with no pronounced peak at the Large Molecule Heimat hot core, in contrast to its isomers acetic acid and methyl formate, which are concentrated on a much smaller scale of less than 5". This indicates a much lower rotational temperature than the 200 K assumed earlier.\\
  
 A report on interstellar glycolaldehyde had been presented at the 58th International Symposium on Molecular Spectroscopy; Columbus, OH, June 16–20, 2003:\\ A report on interstellar glycolaldehyde had been presented at the 58th International Symposium on Molecular Spectroscopy; Columbus, OH, June 16–20, 2003:\\
 D. T. Halfen, A. J. Apponi, and L. M. Ziurys,\\ D. T. Halfen, A. J. Apponi, and L. M. Ziurys,\\
 **[[http://molspect.chemistry.ohio-state.edu/symposium_58/symposium/Abstracts/p181.pdf|Glycolaldehyde Revisited: Can Large Organic Molecules be Accurately Identified in the Interstellar Medium ?]]**.\\ **[[http://molspect.chemistry.ohio-state.edu/symposium_58/symposium/Abstracts/p181.pdf|Glycolaldehyde Revisited: Can Large Organic Molecules be Accurately Identified in the Interstellar Medium ?]]**.\\
-This contribution appeared to question the detection.+This contribution appeared to question the detection.\\
  
 Recent observations of the four lowest //<sup>r</sup>Q//<sub>0</sub> transitions in the microwave region toward Sgr B2(N) secure the glycolaldehyde detection:\\ Recent observations of the four lowest //<sup>r</sup>Q//<sub>0</sub> transitions in the microwave region toward Sgr B2(N) secure the glycolaldehyde detection:\\
Line 20: Line 20:
 **[[https://doi.org/10.1086/424927|Green Bank Telescope Observations of Interstellar Glycolaldehyde: Low-Temperature Sugar]]**\\ **[[https://doi.org/10.1086/424927|Green Bank Telescope Observations of Interstellar Glycolaldehyde: Low-Temperature Sugar]]**\\
 //Astrophys. J.// **613**, L45–L48 (2004).\\ //Astrophys. J.// **613**, L45–L48 (2004).\\
-Interestingly, these transitions point at temperatures of around 8 K, whereas a reanalysis of the millimeter wave transitions, observed by the same group and mentioned above, were reinterpreted in terms of a temperature of about 50 K.+Interestingly, these transitions point at temperatures of around 8 K, whereas a reanalysis of the millimeter wave transitions, observed by the same group and mentioned above, were reinterpreted in terms of a temperature of about 50 K.\\
  
 The observations from the Ziurys group have appeared eventually:\\ The observations from the Ziurys group have appeared eventually:\\
Line 29: Line 29:
 Even though the article mentioned above already has secured the glycolaldehyde detection, this work is still worth mentioning because it shows how difficult it is to obtain definitive results for a moderately complex molecule. 40 (!) transitions have been searched for in the upper 4 mm region to the 2 mm region (68–169 GHz). No significant signals were detected for only two transitions which are fairly high in //K<sub>a</sub>//. Only 8 of the remaining 38 transitions appeared to be unaffected by features of other species. All others were overlapped to a varying amount. A sizeable number of features remained unassigned (U-lines). Thus, this work does not only emphasize the importance of searching for a sufficiently large number of spectral features of a desired moderately large molecule in order to prove its presence in certain media in space, but it also indicates the importance of knowing the identity of the U-lines in order to identify further molecules in space.\\ Even though the article mentioned above already has secured the glycolaldehyde detection, this work is still worth mentioning because it shows how difficult it is to obtain definitive results for a moderately complex molecule. 40 (!) transitions have been searched for in the upper 4 mm region to the 2 mm region (68–169 GHz). No significant signals were detected for only two transitions which are fairly high in //K<sub>a</sub>//. Only 8 of the remaining 38 transitions appeared to be unaffected by features of other species. All others were overlapped to a varying amount. A sizeable number of features remained unassigned (U-lines). Thus, this work does not only emphasize the importance of searching for a sufficiently large number of spectral features of a desired moderately large molecule in order to prove its presence in certain media in space, but it also indicates the importance of knowing the identity of the U-lines in order to identify further molecules in space.\\
 The rotational temperature derived from "clean" lines only is about 25 K; inclusion of some slightly blended lines yields a value of roughly 35 K.\\ The rotational temperature derived from "clean" lines only is about 25 K; inclusion of some slightly blended lines yields a value of roughly 35 K.\\
-Some of the observed U-lines may be caused by presently not identified species. However, a considerable number of these U-lines are caused most definitively by known species in higher rotationally or vibrationally excited states or by minor isotopic species. It is also obvious that the unambiguous identification of molecules more complex than glycolaldehyde will be even more challenging.+Some of the observed U-lines may be caused by presently not identified species. However, a considerable number of these U-lines are caused most definitively by known species in higher rotationally or vibrationally excited states or by minor isotopic species. It is also obvious that the unambiguous identification of molecules more complex than glycolaldehyde will be even more challenging.\\
  
 The molecule was also detected in three Galactic center molecular clouds which have low dust temperatures (10–20 K), even lower rotational temperatures (around 10 K), which are moderately dense (a few tenthousand molecules per cubic centimeter), but which are kinetically moderately warm (about 100 K or more). Three or four transitions were detected with the 100 m GBT telescope between 13 and 23 GHz by\\ The molecule was also detected in three Galactic center molecular clouds which have low dust temperatures (10–20 K), even lower rotational temperatures (around 10 K), which are moderately dense (a few tenthousand molecules per cubic centimeter), but which are kinetically moderately warm (about 100 K or more). Three or four transitions were detected with the 100 m GBT telescope between 13 and 23 GHz by\\
 M. A. Requena-Torres, J. Martín-Pintado, S. Martín, and M. R. Morris,\\ M. A. Requena-Torres, J. Martín-Pintado, S. Martín, and M. R. Morris,\\
 **[[https://doi.org/10.1086/523627|The Galactic Center: The Largest Oxygen-bearing Organic Molecule Repository]]**\\ **[[https://doi.org/10.1086/523627|The Galactic Center: The Largest Oxygen-bearing Organic Molecule Repository]]**\\
-//Astrophys. J.// **672**, 352–360 (2008).+//Astrophys. J.// **672**, 352–360 (2008).\\
  
 A report on the\\ A report on the\\
Line 40: Line 40:
 by M. T. Beltrán, C. Codella, S. Viti, R. Neri, and R. Cesaroni,\\ by M. T. Beltrán, C. Codella, S. Viti, R. Neri, and R. Cesaroni,\\
 //Astrophys. J.// **690**, L93–L96 (2009),\\ //Astrophys. J.// **690**, L93–L96 (2009),\\
-with the IRAM Plateau de Bure Interferometer toward the high mass star-forming region G31.41+0.31 should be viewed with great caution because only three transitions were searched for (near 220.5, 143.6 and 103.7 GHz), and for at least one (near 220.5 GHz) there is a severe problem with the line position. Finally, the assumed temperature of 300 K is at odds with the observations carried out toward Sgr B2(N). Thus, further confirming transitions are needed to establish the first detection of glycolaldehyde outside the Galactic center.+with the IRAM Plateau de Bure Interferometer toward the high mass star-forming region G31.41+0.31 should be viewed with great caution because only three transitions were searched for (near 220.5, 143.6 and 103.7 GHz), and for at least one (near 220.5 GHz) there is a severe problem with the line position. Finally, the assumed temperature of 300 K is at odds with the observations carried out toward Sgr B2(N). Thus, further confirming transitions are needed to establish the first detection of glycolaldehyde outside the Galactic center.\\
  
 The situation is more favorable in\\ The situation is more favorable in\\
Line 46: Line 46:
 by J. K. Jørgensen, C. Favre, S. E. Bisschop, T. L. Bourke, E. F. van Dishoeck, and Markus Schmalzl,\\ by J. K. Jørgensen, C. Favre, S. E. Bisschop, T. L. Bourke, E. F. van Dishoeck, and Markus Schmalzl,\\
 //Astrophys. J.// **757**, Art. No. L4 (2012).\\ //Astrophys. J.// **757**, Art. No. L4 (2012).\\
-6 emission features were observed in a small frequency region near 200 GHz toward source B of IRAS 16293-2422. Though two of the featueres are very weak and at least two are blended, the situation is much more favorable than the one described in the previous paragraph – even if one takes into account that several other features remained unassigned. A rotational temperature of about 300 K was estimated for glycolaldehyde as well as for its isomer methyl formate, which has a column density slightly more than one order of magnitude higher than that of glycolaldehyde. The two molecules were also seen toward source A with similar column densities as in source B, but with a rotational temperature estimated at about 200 K. Moreover, several additional features were seen near 700 GHz red-shifted and in absorption toward source B; slightly off source, the same lines were seen unshifted in emission. This was interpreted as a sign of infall.+6 emission features were observed in a small frequency region near 200 GHz toward source B of IRAS 16293-2422. Though two of the featueres are very weak and at least two are blended, the situation is much more favorable than the one described in the previous paragraph – even if one takes into account that several other features remained unassigned. A rotational temperature of about 300 K was estimated for glycolaldehyde as well as for its isomer methyl formate, which has a column density slightly more than one order of magnitude higher than that of glycolaldehyde. The two molecules were also seen toward source A with similar column densities as in source B, but with a rotational temperature estimated at about 200 K. Moreover, several additional features were seen near 700 GHz red-shifted and in absorption toward source B; slightly off source, the same lines were seen unshifted in emission. This was interpreted as a sign of infall.\\ 
 +This work also reports the identification of three lines attributed to //v//<sub>18</sub> = 1 and one line to //v//<sub>12</sub> = 1; the first identification is probably fairly secure, the second should be viewed with more caution.\\ 
  
 J. K. Jørgensen, M. H. D. van der Wiel, A. Coutens, J. M. Lykke, H. S. P. Müller, E. F. van Dishoeck, H. Calcutt, P. Bjerkeli, T. L. Bourke, M. N. Drozdovskaya, C. Favre, E. C. Fayolle, R. T. Garrod, S. K. Jacobsen, K. I. Öberg, M. V. Persson, and S. F. Wampfler\\ J. K. Jørgensen, M. H. D. van der Wiel, A. Coutens, J. M. Lykke, H. S. P. Müller, E. F. van Dishoeck, H. Calcutt, P. Bjerkeli, T. L. Bourke, M. N. Drozdovskaya, C. Favre, E. C. Fayolle, R. T. Garrod, S. K. Jacobsen, K. I. Öberg, M. V. Persson, and S. F. Wampfler\\
Line 57: Line 59:
 ---- ----
  
-Contributor(s): H. S. P. Müller; 09, 2003; 09, 2004; 02, 2006; 04, 2012; 07, 2012; 09, 2012; 11, 2016 +Contributor(s): H. S. P. Müller; 09, 2003; 09, 2004; 02, 2006; 04, 2012; 07, 2012; 09, 2012; 11, 2016; 06, 2021
  
 ---- ----
  
  
  • molecules/ism/glycolaldehyd.1556285991.txt.gz
  • Last modified: 2019/04/26 15:39
  • by mueller