molecules:ism:hccnc

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
molecules:ism:hccnc [2019/10/23 17:04] muellermolecules:ism:hccnc [2024/04/08 17:57] mueller
Line 5: Line 5:
 **[[https://ui.adsabs.harvard.edu/abs/1992ApJ...386L..51K|Detection of Isocyanoacetylene HCCNC in TMC-1]]**\\ **[[https://ui.adsabs.harvard.edu/abs/1992ApJ...386L..51K|Detection of Isocyanoacetylene HCCNC in TMC-1]]**\\
 //Astrophys. J.// **386**, L51 (1992).\\ //Astrophys. J.// **386**, L51 (1992).\\
-The Nobeyama 45 m telescope was used to detect the //J// = 4 – 3, 5 – 4, and 9 – 8 transitions near 39.7, 49.7, and 89.4 GHz. The [[http://www.astro.uni-koeln.de/site/vorhersagen/molecules/ism/HNC3.html|HNC<sub>3</sub>]] isomer was found shortly thereafter, whereas the HC<sub>3</sub>N isomer had been known for a considerable time.+The Nobeyama 45 m telescope was used to detect the //J// = 4 – 3, 5 – 4, and 9 – 8 transitions near 39.7, 49.7, and 89.4 GHz. The [[http://www.astro.uni-koeln.de/site/vorhersagen/molecules/ism/HNC3.html|HNC<sub>3</sub>]] isomer was found shortly thereafter, whereas the HC<sub>3</sub>N isomer had been known for a considerable time.\\ 
 +\\
  
 P. D. Gensheimer reported on\\ P. D. Gensheimer reported on\\
 **[[https://doi.org/10.1023/A:1000744924767|Observations of HCCNC and HNCCC in IRC+10216]]**\\ **[[https://doi.org/10.1023/A:1000744924767|Observations of HCCNC and HNCCC in IRC+10216]]**\\
 //Astrophys. Space Sci.// **251**, 199 (1997).\\ //Astrophys. Space Sci.// **251**, 199 (1997).\\
-The IRAM 30 m telescope was used to detect the //J// = 9 – 8, 14 – 13, and 21 – 20 transitions near 89.4, 139.1, and 208.6 GHz. The HC<sub>3</sub>N to HCCNC ratio is around 150, somewhat higher than in TMC-1.+The IRAM 30 m telescope was used to detect the //J// = 9 – 8, 14 – 13, and 21 – 20 transitions near 89.4, 139.1, and 208.6 GHz. The HC<sub>3</sub>N to HCCNC ratio is around 150, somewhat higher than in TMC-1.\\ 
 +\\
  
 A. Belloche, H. S. P. Müller, K. M. Menten, P. Schilke, and C. Comito\\ A. Belloche, H. S. P. Müller, K. M. Menten, P. Schilke, and C. Comito\\
Line 16: Line 18:
 **[[https://doi.org/10.1051/0004-6361/201321096|Complex Organic Molecules in the Interstellar Medium: IRAM 30 m Line Survey of Sagittarius B2(N) and (M)]]**\\ **[[https://doi.org/10.1051/0004-6361/201321096|Complex Organic Molecules in the Interstellar Medium: IRAM 30 m Line Survey of Sagittarius B2(N) and (M)]]**\\
 //Astron. Astrophys.// **559**, Art. No. A47 (2013).\\ //Astron. Astrophys.// **559**, Art. No. A47 (2013).\\
-The //J// = 10 – 9 and 11 – 10 transitions near 99.4 and 109.3 GHz were detected, the latter possibly blended with part of a methyl formate transitions. Overall, this detections is tentative.+The //J// = 10 – 9 and 11 – 10 transitions near 99.4 and 109.3 GHz were detected, the latter possibly blended with part of a methyl formate transitions. Overall, this detections is tentative.\\ 
 +\\
  
 C. Vastel, K. Kawaguchi, D. Quénard, M. Ohishi, B. Lefloch, R. Bachiller, and H. S. P. Müller\\ C. Vastel, K. Kawaguchi, D. Quénard, M. Ohishi, B. Lefloch, R. Bachiller, and H. S. P. Müller\\
Line 26: Line 29:
 **[[http://dx.doi.org/10.1051/0004-6361/201731262|The Observed Chemical Structure of L1544]]**\\ **[[http://dx.doi.org/10.1051/0004-6361/201731262|The Observed Chemical Structure of L1544]]**\\
 //Astron. Astrophys.// **606**, Art. No. A82 (2017)\\ //Astron. Astrophys.// **606**, Art. No. A82 (2017)\\
-by S. Spezzano, P. Caselli, L. Bizzocchi, B. M. Giuliano, and V. Lattanzi.+by S. Spezzano, P. Caselli, L. Bizzocchi, B. M. Giuliano, and V. Lattanzi.\\ 
 +\\
  
 +J. Cernicharo, N. Marcelino, M. Agúndez, C. Bermúdez, C. Cabezas, B. Tercero, and J. R. Pardo\\
 +reported on the\\
 +**[[https://doi.org/10.1051/0004-6361/202039274|Discovery of HC<sub>4</sub>NC in TMC-1: A study of the isomers of HC<sub>3</sub>N, HC<sub>5</sub>N, and HC<sub>7</sub>N]]**\\
 +//Astron. Astrophys.// **642**, Art. No. L8 (2020).\\
 +The authors report the detections of the <sup>13</sup>C isotopomers of HCCNC as well as that of DCCNC. The observations were obtained with the Yebes 40m radio telescope in the course of a line survey covering 31.0–50.3 GHz.\\
 +\\
 +
 +J. Cernicharo, B. Tercero, C. Cabezas, M. Agúndez, E. Roueff, R. Fuentetaja, N. Marcelino, and P. de Vicente\\
 +carried out more recently a\\
 +**[[https://doi.org/10.1051/0004-6361/202348822|Study of the HCCNC and HNCCC isotopologs in TMC-1]]**\\
 +//Astron. Astrophys.// **682**, Art. No. L13 (2024).\\
 +They reported in the framework of improved data of the above survey the detection of HCC<sup>15</sup>NC with a <sup>14</sup>N/<sup>15</sup>N ratio of roughly 240, slightly lower than ~317 obtained for HC<sub>3</sub>N. However, this value may be affected by a probable but at that time unrecognized blending of the //J// = 5 − 4 transition of HCC<sup>15</sup>NC (J. Cernicharo, private communication). They also redetermined the <sup>12</sup>C/<sup>13</sup>C ratios. The values are ~95 with scatter that is insignificant with respect to the uncertainties. These values are somewhat lower than ~65 usually found in the the local ISM, but very similar to values of HNC<sub>3</sub> <sup>13</sup>C isotopomers and to two of the three HC<sub>3</sub>N <sup>13</sup>C isotopomers. An H/D ratio of ~31 was reported, but it appears again as if the //J// = 5 − 4 transition of DCCNC is too strong. The ratio from 4 − 3 alone would be closer to ~55 observed for HNC<sub>3</sub> and HC<sub>3</sub>N.\\
 +\\
  
 ---- ----
  
-Contributor(s): H. S. P. Müller; 12, 2017+Contributor(s): H. S. P. Müller; 12, 2017; 11, 2020; 04, 2024
  
 ---- ----
  
  
  • molecules/ism/hccnc.txt
  • Last modified: 2024/04/09 10:31
  • by mueller