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Quantum-chemical calculations

Structural calculations

Table S1: CCSD(T) structural parameters of NCCO" (in A), center-of-mass-frame dipole
moments (in D), and nitrogen nuclear quadrupole coupling constants e@Qq(N) (in MHz)
calculated using various basis sets.

Basis set rN—c  To—c  Tc—O [ eQq

cc-pVTZ 1.1736  1.3738 1.1228 1.605 —5.771
aug-cc-pVTZ 1.1733 1.3745 1.1227 1.594 —5.763
cc-pVQZ 1.1698 1.3723 1.1188 1.604 —5.953
aug-cc-pVQZ 1.1700 1.3724 1.1190 1.598 —5.949
ANO1 1.1735 1.3719 1.1221 1.593 —5.807
ANO2 1.1697 1.3715 1.1188 1.604 —5.963
cc-pwCVTZ 1.1696 1.3714 1.1191 1.625 —5.798
aug-cc-pwCVTZ 1.1697 1.3713 1.1195 1.609 —5.791
cc-pwCVQZ 1.1668 1.3692 1.1163 1.619 —5.880

aug-cc-pwCVQZ 1.1670 1.3694 1.1165 1.613 —5.875
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Table S2: Internal coordinates for the bare NCCO™ ion in comparison against the T-shaped
Ne-complex calculated at the fe-CCSD(T) /aug-ce-pVTZ level. Bond lengths are given in A,
angles in degrees.

NCCO+ NCCO+, T-shaped Ne-cluster
N N
Cilrl C1lr1
X 2rd1 a90 X 2rd1 a90
C21r2 3 a% 1 d180 C2r23al 1l di180
X 4 rd 2 a90 3 dO X 4 rd 2 a90 3 dO
04 r3 5 a% 2 di180 0 4 r3 5 a2 2 d180
NE 6 r4 4 a3 5 dO
rl = 1.17333 rl = 1.17310
rd = 1.00000 rd = 1.00000
a%0 = 90.00000 a%0 = 90.00000
r2 = 1.37453 r2 = 1.37470
- al = 90.41725
d180 = 180.00000 d180 = 180.00000
do = 0.00000 do = 0.00000
r3 = 1.12266 r3 = 1.12252
a2 = 90.45498
rd = 3.13242
a3 = 65.46457

Table S3: Rotation-vibration interaction constants «;, and ¢-type doubling constants ¢; of

NCCO™ calculated at the fe-CCSD(T)/ANO2 level of theory.

Mode o; Qi
[MHz| [MHz]

vi(o)  24.434

V(o) 17.002

v3(o) 11.738

v(r)  —9.675  3.363

vs(r) —22.732  7.751
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Empirical scaling of NCCO™ rotational constant

Table S4: Empirical scaling of NCCO™ rotational constant from different molecular calibrators.

ot B ABS Do Doy Bl Buy/Base Ba(NCCO™.BE) Bops — Bowry
[MHz| [MHz| [MHz| [MHz| [MHz| [MHz|
NCCN 4703.906 0.132 4703.774 4709.386 1 1.00119 4564.206 0.426
CNCN 5167.891 —1.025 5168.916 5174.136 2 1.00101 4563.371 —0.409
C;0 4791.246 —14.880 4806.126 4810.886 3 1.00099 4563.282 —0.498
CyN™ 4849.673 2.377 4847.296 4851.622 4 1.00089 4562.835 —0.945
C,H" 4651.521 1.309 4650.212 4654.945 5 1.00102 4563.407 —0.373
HC3N 4544 .861 1.783 4543.078 4549.059 6 1.00132 4564.769 0.989
HCCNC 4963.987 1.573 4962.414 4967.838 7 1.00109 4563.749 —0.031
HC?,OJr 4453.556  —1.691 4455.247 4460.589 8 1.00120 4564.233 0.453
NCCNH'®  4430.646 —1.669 4432.315 4438.012 9 1.00129 4564.626 0.846
HC,NH" 4323.167 0.099 4323.266 4328.997 9 1.00133 4564.810 1.030
HCCNCH" 4660.996 2.256 4658.741 4664.432 10 1.00122 4564.336 0.556

NCCO™ 4554.302  —4.465 4558.767 4563.780 1.00110
@ ae-CCSD(T) /cc-pwCVQZ. ° fe-CCSD(T)/ANOL.




Mass spectra

FELion: NCCO™", pyruvonitrile
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Figure S1: Mass spectra of precursor pyruvonitrile (acetyl cyanide, C;H;NO), produced
in a storage ion source (SIS) via electron bombardment using an electron energy of about
55eV. Blue trace: First quadrupole mass selector (QP I) of 4 K 22-pole ion trap apparatus
FELion is used non-mass-selective as an ion guide. Ions pass through the ion trap without
being trapped, get analyzed in the second quadrupole (QP II) and are detected subsequently.
Green trace: Similar conditions as for blue trace, but QP I is used as a mass selector and
only transmits around m/z = 54. Red trace: Mass selected ions (via QP I) are trapped and
cooled down to a nominal temperature of 7K by a 3:1 He:Ne mixture, while also forming
NCCO"-Ne clusters (m/z = 74) in the trap. Masses of precursor, ions of interest and their
corresponding Ne—clusters are highlighted by vertical dashed gray lines.
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Figure S2: Same data as above (Fig. S1), using a logarithmic plot of the counts.
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COLtrap II: NCCO™, methyl cyanoformate
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Figure S3: Mass spectra of precursor methyl cyanoformate (CH;OC(O)CN), produced in the
SIS of the COLtrap II apparatus by electron bombardment using an electron energy of about
65eV. Blue trace: QP I is used non-mass-selective as an ion guide. Ions are trapped and
cooled down to nominal trap temperature of 42(2) K by a cold He pulse and continuous flow
of Ny, extracted, analyzed in QP II and detected subsequently. Red trace: Same conditions
as for blue trace, but mass selection (via QP 1) only allows ions around m/z = 54 (NCCO™)
to pass. Masses of precursor and ions of interest are highlighted by vertical dashed gray lines.
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Figure S4: Same data as above (Fig. S3), using a logarithmic plot of the counts.
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IR-LOS studies: IR spectra, Boltzmann Plot

Infrared (IR) leak-out (LO) spectra of ro-vibrational transitions of NCCO™ recorded with the
10 K ion trap apparatus COLtrap II, using a quantum cascade laser (QCL, Daylight Solutions
MHF 1961 - 2205cm™!) are shown in Fig. S5. The laser scanning speed was chosen such to
ensure an accurate depiction of the line shape of the ro-vibrational transitions. Similar off-
resonance background LO rates were used throughout the entire measuring range to achieve
comparable IR intensities of all individual transitions. Assuming saturation effects to be
negligible, the rotational temperature of NCCO™ in the ion trap was determined via the line
intensity distribution in the P— and R—branches of the 5 band using a Boltzmann plot (see
Fig. S6). The smooth linear trend yields 7,.,; p = 51.2(9) K from P-branch data and T}..; r =
48.8(16) K from R-branch data, resulting in an average T,,, = 50.0(9) K. The excellent
agreement of the (linear) Boltzmann-like intensity distribution of the pure experimental
data without any normalization necessary - both in the P- and the R-branch - suggests no
dependence of the rotational state J on the LO process. The collisional temperature T, of

the ions and their neutral collision partner Neon (T,cura = 42(2) K), can be derived from

(mion Theutral + Mueutral Tion)
(mion + mneutral)

the collisional kinetic energy in the center-of-mass system: T, =
Assuming the rotational temperature of the ions to be equal to the effective collisional
temperature T, a quite reliable ion temperature T},, can be calculated as 65 K. Compared
to the nominal trap temperature of 42(2) K, this shows a somewhat increased temperature
of the ions, indicating heating effects of collisions under the influence of the radio frequency
(RF) field of the trap.!! The corresponding, experimentally observed line width FWHM;,y

of about 60 MHz (0.002cm™!) is primarily composed of Doppler broadening and the laser

linewidth, resulting in: FWHM, o = /FWHM:, + FWHM.,,,.. Accordingly, the IR data

ion laser*

lead to an experimental laser linewidth of 40 MHz, which aligns with the QCL specifications.
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Figure S5: IR LO spectra of ro-vibrational transitions of NCCO" v, band recorded at
COLtrap II. The first two rows show some of the most intense transitions, while the last
row shows the weaker transitions at higher J quantum numbers in the P- and R-branches,

respectively. All spectra show a spectral range of 0.025 cm
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Figure S6: Boltzmann plot of intensities I of P-branch (red dots) and R-branch (blue
squares) transitions in the NCCO™" v, band. [ is the experimental intensity, g is the multi-
plicity of the initial rotational state, S(J) is the Honl-London factor, and E; is the rotational
energy of the molecule in its vibrational ground state. Rotational temperatures, resulting
from linear fits, are given by T, p = 51.2(9) K (red dashed line) and T, g = 48.8(16) K
(blue line). This yields an average rotational temperature of 7,,, = 50.0(9) K.
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Global fit file of IR and mmw data

Truncated fit file from output of Pickett’s SPCAT program.
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Spectra of pure rotational transitions
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Figure S7: Pure rotational transitions in the ground vibrational state of NCCO™, recorded
using a leak-out IR/mmw double resonance scheme. For this recording, the IR laser was
stabilized on a ro-vibrational transition of the v, vibrational band (orange arrow) while
tuning the mmw frequency in steps of 5 to 10kHz. Resonant mmw excitation (red arrow)
increases the population in the lower quantum state probed by the IR laser, resulting in an
increase of the LO signal of up to about 10 %. Normalized counts (red dots) are determined
from the ratio of the ion counts in the mmw search window and the counts at an off-resonant
reference frequency. Line positions of the mmw fit with calculated hyperfine splitting are
shown as black sticks.
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Figure S7 continued.
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